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Abstrad--Numerical calculation of nucleating water vapor flow through a nozzle at high pressure is 
presented. Contrary to the classical approach which takes into account only latent heat release due to 
condensation, the vapor phase removal and change of vapor structure has also been taken into account. This 
more general treatment of condensing vapor is needed when the influence of condensation of vapors at higher 
pressure on gasdynamic behavior of the flow is considered. At higher pressure the radius of critical droplets 
can be comparable with the mean free path. This has to be taken into account when the equation of 
droplets' growth is derived. A modified set of equations using Hertz and Knudsen models for droplet 
growth is proposed. 

I N T R O D U C T I O N  

All the schemes for calculation of water vapor expansion with homogeneous condensation can be 
divided in three basic parts, i.e. (1) equations of conservation and thermodynamic description 
of the condensing gas, (2) an expression for the nucleation rate, and (3) equations for droplet 
growth. This division corresponds to the physical picture of the flow with condensation. Many 
attempts have been undertaken to improve the models used in the above analysis. In the 
present paper, attention will be focused on the state and caloric equation of water vapor and on 
the growth of nuclei at high pressure. The problem of proper thermodynamic presentation of 
condensing vapor has been discussed by Bakhtar et al. (1975) and Ludwig (1975). In these 
papers the virial coefficient of the first order was introduced in the state equation giving the local 
specific heat as a function of temperature and pressure. Attempts have been made to allow for 
real gas effects when condensation occurs at higher pressure. This is of importance for the 
nuclear power station technology where the condensing flow of steam in the turbine occurs at 
high pressure. From a theoretical point of view, it is interesting to find out how the conden- 
sation at higher pressure can influence the gasdynamic field and what are the characteristics of 
the condensing phase (i.e. concentration and sizes of droplets). Contrary to the situation at low 
pressure (below 1 bar) there are not very many experimental investigations at the higher 
pressure (up to 100 bars). A few experiments were carried out by Gyarmathy et al. (1973) and 
for intermediate values of pressure by Valha & Ryley (1977). These experiments give some idea 
of the differences between condensing steam at low and high pressure. The higher the pressure, 
the more dense is the condensing phase and the greater the size of the droplets. There was also 
evidence of a weak detonation type of a change in the gasdynamic behavior of condensing 
steam at higher pressure in these experiments. 

According to the theoretical analysis by Puzyrewski (1975) for the steam at the pressures 
above 30 bars the latent heat released is lower than removal of gas enthalpy by condensing 
molecules. From this point of view the gasdynamic effect of condensation at higher pressure 
should be opposite to the one observed at lower pressures. The authors of the present paper 
have revised the problem of the gasdynamic behavior of condensing vapor in order to explain 
the experimental facts. It has been found that three physically important factors are responsible 
for the gasdynamic behavior of condensing vapor at higher pressure. 

Two of them are included in the energy conservation equation, namely heat release and gas 
enthalpy subtraction from the flow. They are coupled in nondimensional parameter (LICpTs) 
where L is latent heat, Cp is local specific heat and Ts is saturation temperature. The third one 
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comes out of the equation of state. The structure of vapor different from the structure of ideal 
gas influences the state equation through the compressibility factor. This factor influences the 
behavior of gasdynamic field very strongly. 

As the mean free path decreases when the pressure rises there is also a need to re-examine 
the formulae for nuclei growth. At low pressure the nuclei, or so called critical droplets, are 
small in comparison with the mean free path. So there is heat and mass exchange at the free 
molecular level. 

At the high pressure the mean free path is of the order or smaller than the size of critical 
droplet so that the heat and mass exchange is partly of free molecular and partly of continuous 
character. This has to be taken into account when condensation is calculated for a broad range 
of pressure changes. 

CONSERVATION EQUATIONS 

We will confine our consideration to the steady one-dimensional model of condensing flow. 
There is a criticism of the validity of one-dimensional approach to the flow with condensation. 
It has been shown by Bratos & Meier (1976) that the two-dimensional model describes better 
the condensation front. Nevertheless, one dimensional approach is commonly used in engineer- 
ing types of calculation and has in certain cases quite satisfactory accuracy. The general 
features of condensing flow can also be described in the frame of one-dimensional model. 

Mass conservation 

If the relative volume of condensing phase is small, the mass conservation equation may be 
written in the following form: 

pc uA = mo [1] 
l - y  

where pc is the density of gas, y is the wetness fraction, u is the velocity and A is the cross 
section of the nozzle. The more general form is 

[(1 - ODpG + OLpL]uA = mo [2] 

which can be rearranged with the assumption that OL'~ 1 and y = OLPL](pa + OLpL) into[l] 
where OL is the relative volume of liquid, and PL is the density of liquid. 

Momentum conservation 

Let us introduce the impulse function I 

fx dA 
I(x) = mouo + poAo + Jo p-d-~x dX [3] 

where x is the coordinate along the nozzle and p the pressure. Then the momentum con- 
servation equation may be rewritten in the form: 

mu + pA = I(x). [4] 

This is an integral type of equations with respect to p. 

Energy conservation 
The steady flow energy conservation equation for the condensing vapor has the form: 

~ +  h = ho [5] 

where h is the enthalpy of condensing mixture. 
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If the saturation conditions are used as the reference, the enthalpy of condensing vapor can 
be written as: 

h=(1-y)(hbs+f i°C, dr)+y(hLs+L LCdT) [6] 

where has, hLs are the enthalpies of saturated gas and liquid and To, TL, Ts temperatures of 
gas, liquid and saturation temperature. 

It is convenient to introduce the mean specific heat 

! 
6 - Ta_ Ts lrs C~ dT [71 

d = rE ----~s C dT. [81 

The relation [6] can be rewritten in algebraic form 

h = (1 - y)[has + (~p (TG - Ts)] + Y[hLs + 6'(TL - Ts)]. [9] 

The latent heat L is defined at saturation conditions as 

L = has - hLs. [10] 

Introducing [9] and [10] into energy equation we get 

u_.~ + [ CpTSL C(T~- ] (I - y)C, TG - [ 1  - hcs ho. T s ) j Ly -  CpT~ + = [11] 

It is noteworthy that from[l 1] follows the approximation commonly used for the calculation of 
condensing flow at low pressure. 

When ((~(TL- Ts)IL) plus (CpTslL) is small compared to unity and 

hos = CpTs + const. 

which is a good approximation for low pressure and also y ,~ 1, then[11] becomes: 

u--j+ CpTo - Ly = const. [12] 

The form[12] of energy equation is justified at low pressure. It takes into account only heat 
release due to condensation. 

EQUATION OF STATE 

To close this set of conservation equations the equation of state is needed. 
We will apply the form 

P = gZ(p, To) poTo [13] 

where Z is so called the compressibility factor and R gas constant. 
This form of state equation is very convenient for describing the real properties of steam 

given in steam tables. 
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For different types of Z function different models of processes can be discussed. 
From the above set of equations, the basic quadratic form for velocity can be derived. 

Cp I(x) u 
u2 - 22Cp - RZ(p, To) mo 

+ 2co2RZ(p'Ta)- RZ(p, Ta) { [1- ~eTsL C(T~Ts)JLy+h°-has+CpTs} =0" [14] 

This is a convenient form to discuss the gasdynamic behavior of the solution at the throat 
(saddle point) and the influence of condensation as well. 

CHARACTERISTIC FEATURES OF THE QUADRATIC FORM[14I 

Two important parameters are included in the quadratic form[14] namely mo and Z(p, TG). 
The mass flow rate mo plays an important role in the structure of the saddle point at sonic 

conditions. If the mass flow rate mo is chosen properly at every coordinate x two roots of[14] 
exist. At the throat a double root exists 

U *  ~- I~ 1 -~ l.~ 2 -~ -- CP I ( X , )  

2Cp -- RZ(p, TG) mo 

.]{ 2RZ(p, Ta) CpTs C(T~ Ts)lLy+ ho-has+ CpTs}) [15] 

and this a singular point. 
An error in the mass flow rate mo changes the structure of the solution at the singular point. 
It is noteworthy that while applying the quadratic form of integral type [14] there is no need 

to differentiate all the parameters describing the behavior of real gas. 
The compressibility factor Z and the mean specific heat can be expressed in the form of 

polynomials to approximate the steam tables. The influence of condensation appears in the 
equation as 

If we assume that the temperature of liquid TL phase does not exceed saturation temperature 
considerably, the term (C(TL-Ts) /L)  can be neglected. The condensation factor then is 

reduced to 

The influence of this parameter has been discussed by Puzyrewski (1975). The discussion 
presented there is valid for either ideal or isentropic process of condensation, i.e. 

Z(p, Ta) = const. [18] 

Z = Z(p). [191 

A more exhaustive numerical analysis presented in this paper lead the authors to the conclusion 
that neither the assumption[18] nor [19] is a good approximation in the real vapor condensing at 

higher pressure. 
In spite of the fact that above 30 bars for steam (CpTslL) is higher than unity and [17] has 

negative sign, the compressibility factor Z(p, T~) cancels this influence of negative factor in the 
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cube brackets in[14]. The ratio (OpTstL) represents the thermodynamic potential OpTs sub- 
stracted by condensing molecules to the heat L added due to the condensation. From this point 
of view the condensation may appear as the heat addition Ly and enthalpy of vapor 
subtraction OpTsy depending on the sign of the expression[17]. The third factor which 
influences the solution[14] is: 

2RZ(p, To) 
2Cp - RZ(p, To)" [20] 

Replacing the temperature by the entropy s, we have 

z(p ,  To) = Z(p, To(s, p)) = Z(s, p). 

The condensation process is not isentropic so for s increasing towards st, Z(p, s) also increases 
and then the factor[20] increases. It is noteworthy, that the gas phase changes its entropy 
considerably when temperature rises from supercooling temperature to saturated temperature. 

The value of Z(p, To) depends on the number of monomers, dimers, trimers and so on in 
gas phase structure. This influences the equation of state. The factors [17] and [20] act in an 
opposite way at higher pressure. The resulting effect may be established by the numerical 
calculation for a given range of parameters. 

C O N D E N S A T I O N  P R O C E S S  

The nonequilibrium condensation appears in the quadratic form[14] as a wetness fraction y 
and the liquid and gas temperature TL and To differs from the saturation temperature Ts. 
The wetness fraction is defined by the relative volume OL which can be calculated as: 

4 x 

po~x ) 

where po is the density of gas, 3" the nucleation rate and r is the radius of droplets. 
The radius of a droplet starts to grow from the critical size r,(x', x) formed at a position x' 

so we have: 

r(x', x) = r,(x', x) + f x  dr  Jx, dx dx. [22] 

The general formula for the critical radius is 

2~r®(To) 
r,  = PL[iZo(p ' To) - I~L(P, To)] [23] 

where the difference of thermodynamic potentials /~o of gas phase and /ZL of liquid phase 

P.6(P, To) -  I~L(P, To) [24] 

has to be taken from the tables at high pressure (~r® means surface tension coefficient). 
The classical expresion of Volmer-Frenkel type has been used for nucleation rate. In the most 

simple way it may be written as 

~r=nexp ~ " 41rr~r~(To) 1 
[ - 3kTo J [25] 
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where n = (p/kTG) [k--Boltzmann constant] is the concentration of single molecules and r has 
the dimension of time which has been estimated as 

r = ( r o l  J(2m%(rc)~ P "~-' [26] 

The adjustable parameter F has been evaluated by Barschdorff (1976) to remove the dis- 
crepancy between the theory of nucleation of Volmer-Frenkel type and the experimental 
results for the pressure range up to 30 bars. The coefficient 0 has been introduced by Feder et 
al. (1%6). It takes into account the nonisothermal effects. 

For the growth of nuclei we will follow the Hertz and Knudsen model of condensation 
upon a liquid surface. The main criticism of this model is that the accomodation coefficients 
introduced there, especially the condensation coefficient ao have been determined between 0 
and 1 in different experiments. Because of this large scatter this model has been considered to 
be very uncertain and it has been replaced by the diffusion models. Nevertheless, the Hertz and 
Knudsen model comes from a very reasonable consideration of the physical mechanisms at the 
interface between the droplet surface and the surrounding vapor in the free molecular regime. 

The mechanisms of mass and heat transport are essential in the process of molecules 
condensation upon the surface of droplets. These two mechanisms are coupled. The heat 
transport is due to the molecules reflected and evaporated from droplet surface. The conden- 
sation heat removed from the droplet surface through temperature jump must be then 
transported from the neighbourhood of the droplet surface to the bulk of gas by the heat 
conduction mechanism (see Fig 1). 

Notation fOr the femperofure dlstnbuhbn 

- 7-' - temperature .jump 
z a/ me aur~ace 

Notahon for the mass balance 

_ , _ j ; / ' / '  / 

IVo/ation for the energg balance 

mi @(. ~ m i h L - energy o~ incic~nf 6earn 

m c e c  = m c h  c - - - J l - -  o~ condensed beam 

m, e~. = m~h~ - -- ,-- of reflecled team 

m e e ,  ~ mehe - - - ' - -  ~" evaporated beam 

- mean Free ~h 

o f -  coe[{icien÷ 

M - mass of olr~plet 

Figure 1. Notation for the model of droplet growth. 

- dro~e÷ ~emperaeure 

I , r,,~c~r, 
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The Hertz-Knudsen model of condensation relates to the situation where the temperature 
jump between the surface and the vapor controls the mass and heat transport processes. A 
more general situation is when the temperature jump and the gradient of temperature are 
present at the surface. The temperature jump at solid surface according to the kinetic theory is 
of the order 

8T= TL-  T[ = a l ( ~ ) ~ = r  [27] 

where 1 is the mean free path and the coefficient a is of the order unity. 
Let us assume that the estimation[27] is also valid for a condensing surface. Assuming, 

furthermore, that the steady state heat conduction from the droplet is an admissible ap- 
proximation, the temperature gradient at the surface is then: 

From the above we have 

and 

(0T6~ = _ [28] Ts 
a~/~=, r 

8T = TL- T'L = a~(T'L- To) 

Tk= t 
l + a -  

r 

[29] 

[30] 

Neglecting the effusion effect we can approximate the flux of energies in the terms of 
enthalpies. According to the notation in figure 1 the energy balance for the droplet enthalpy is: 

d ( Mht.) = mchc( T ~) + m,hc( T'L) - m,hr( TL) - m,h,( TL). [31] 

Taking into account the mean specific heats [7] and [8] the above equation can be rearranged 

M-~-~ = [L - (if:- Cp)(TL - Ts)]--~-dM _ (me + a~m,)C'p(TL - T•) [32] 

where aa is the thermal accomodation coefficient. 
Comparing the heat conducted across the temperature jump (the second term on the r.h.s. 

of [32]) with the heat conduction due to the temperature gradient of the surface we get 

Rearrangement gives 

(mc + aom,)Cp(TL - T'D = 4n'r2A T'I, - To [33] 
r 

2a[ac + aa(l - ac)] mpffp t 
2 - ac V'(2~'mkT~)" = A [34] 

where ac is condensation coefficient, l mean free path and ,l is heat conduction coefficient. 
The relation[M] may be helpful for the evaluation of condensation coefficient ac when a 

and the thermal accomodation coefficient aa are known. These three coefficients are tied 
together by relation[34]. The other models which are based on diffusion or selfdiffusion 
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phenomena encounter the same type of difficulties when the magnitudes of temperature jump 
and the selfdiffusion coefficient are concerned. 

Following the derivation presented by Puzyrewski & Krol (1976) and taking into account the 
above modifications the set of equations for droplets growth may be written as: 

dr 2a~ m [ p ps(r, TD] 
dt - 2 - a~ pLx/(27rmk)[~/(-T't,) ~--(TD j 

[35] 

d T L = 3 [ L - ( C - C p ) ( T L -  Ts)Idr 3A T L -  T~ [36] 
dt rC dt r2(;pr l + al/r" 

This is a more general model of condensation in the sense that it covers the range of small and 
large droplets in respect of the mean free path. 

In this model of condensation coefficients F and a - s  allow us to match the onset of 
condensation and the pressure disturbance due to condensation with experimental results. 
According to the published papers on condensation the measurements of pressure distribution 
and light scattering effects are predictable by this type of model. It is true that this comparison has 
been done for rather low pressure. One of the purposes of the present paper is to modify this model 
of condensation for high pressure. 

THE NUMERICAL SCHEME 

The scheme of calculation of the water vapor expansion in the Laval nozzle has been 
worked out on the basis of the described model. The scheme has to meet certain requirements, 
namely: 

(1) To be convergent with respect to the integral term in[14]. 
(2) To allow to jump over the singular point at the throat. 
(3) To couple the set of conservation equations with the set of equations describing the 

condensing process. Assuming that we are restricted to condensation in the supersonic part of 
the nozzle there is no upward influence of condensation upon the flow. In such a case "step by 
step" method can be applied. 

The scheme of Picard type has been applied for iteration of integral term I(x) .  For a given 
step n along x-axis an interative loop in respect to an improved value of I, was repeated 

i J A A .  ~ A A .  t.  = I ~ - ' - p ;  - - y -  + p.  [37] 

until the given accuracy 

]p,~ - pi÷ll < ~ t 

was achieved. 
In the region where no condensation takes place the set of conservation equations has the 

form 

i2 i m/~n0 u ,  + ~ ( p . ,  7", i) u i + Q(p i ,  T i) = 0 [38] 

pn t - lni -- m°uni [39] 
A,  

7", i=  p i ( i i _ p i . A D . A ,  
too2(1 - y). R .  Z(pff, T.i)" [40] 

Such a scheme provides rather a good convergence. 
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The iterative procedure has been repeated between the inlet of the nozzle and the throat 
until the proper value of the mass flow rate was achieved. The behavior of solution near the 
saddle point is very sensitive to the error of mass flow rate and to the accuracy of p i and T, i in 
the iterative loop i. Even if this error is small it is difficult to obtain two roots of[14] close 
enough to each other at the throat. By means of the linear extrapolation of coefficients in 
quadratic form[14] the sensitivity at the throat with respect to errors has been reduced. 

where 

(~(pn i, Tn i) = ( I ) (Pn_ l  ' i - I  _ T.-1) + O. (P.-1 p i) 

Q(p i, T i) = Q(p.-l, T.-O + q/-' (p.-, - pn i) 

[41] 

[42] 

p n i  = I i-1 _ m o U n  i 
A. [43] 

A few iterations in the subsonic part of the nozzle were quite enough to reduce the error in 
mass rate to _+ 0.1 per cent and then jump to the supersonic part where condensation starts. The 
coupling procedure of two sets of equations have not been solved from the theoretical point of 
view quite satisfactorily. If the condensation takes place the parameter y is involved in[14]. In 
order to find the value of y we need to solve the system: 

d • =  fl(P,,, T. . . . .  ) 

drL 
dt = f2(p., I". . . . .  ) 

~ ( x ) = n e x p {  4"trr* 3°r=(Ta) ] 
3kTo J 

47rp(x) fo ~ r3(x', x) dx' oL=-~ 

O~L y =  
Po + OtpL 

which is closed if p, and 7", are given. On the other hand p, and T, can be obtained from the 
conservation equation if y is calculated. To break this dependence the extrapolated value of y 
has been used to solve the set of conservation equations and afterwards y has been recomputed 
from the above system. 

When the extrapolated and computed values of y fulfilled the condition 

lYextr - -  Yrecalculatexll < ~2. 

the solution has been considered as being satisfactory. 

RESULTS OF CALCULATION 

The influence of the compressibility factor Z in the state equation on the solution is shown in 
figure 2. If we assume that Z is either constant or is the function of pressure only we get for 
high pressure the deviation from the frozen flow due to condensation, as indicated by the dotted 
line in figure 2. It is a characteristic feature that the condensation in this case decreases 
pressure compared with frozen flow and increases the velocity, contrary to the classical 
gasdynamic behavior with the heat release only. It can be explained by the fact that the vapor 
enthalpy subtraction is relatively high compared with the heat release L. 
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[~,orl![',~]J~,/,] e o - , oo~  ~ ro-aeozoK 
L x q  = I m - t h t ~ o t  p o s i t i o n  

4.J" 

. . . . .  i -  

~nd Z=Z (p) 

i 
3~ ~soo~ 6~o 

/ 
/ 

/ l 

25 ~0 ~ 
~YO 

Cross sech'on orea oF the nozzle 

A/A p= ,~7,0 - 97,,¢8x + ~t#qgx z [ I 
. . . . . .  results for Z = Z  ( p ]  I 

resu//s For Z=Z (p,T~ ! 

= ¢12 ~ h,  - -  i x [.,~ 

Figure 2. The influence of factor (OpTs~L) and Z on the solution of[14]. 

The factor Z ( p ,  T~) cancels this influence giving the spread out jump of pressure (full lines 
in figure 2). 

In order to determine how the proposed scheme works at different pressures the cal- 
culations have been done for different experiments. The data was taken from references by 
Gyarmathy et al. (1974) and Bakhtar et  al. (1975.) The nozzle area and pressure distribution was 
taken from the publication with figures in a small scale which reduces their accuracy. One of 
the problems in these calculations is to match the measured and calculated pressure distribution 
ahead of the condensation zone. It has been found in different experiments by Bakhtar et  al. 

(1975), Ludwig (1975) and Puzyrewski (1%9) that measured pressure distribution along the 
nozzle before condensation may be obtained from one dimensional calculation when geometri- 
cal cross section of the nozzle is corrected. There are a few reasons for these corrections 
namely: possible leakage of the vapor along the nozzle profile, three dimensional character of 
flow field and friction at the nozzle walls. The experiments taken for the sake of comparison 
with the calculations are indicated in Table 1. The results of comparison of pressure distribution 

Table 1. 

Author's Gyarmathy Bakhtar et 
experiments et al. experiments al. experiments 

Initial pressure & 
temperature level 

Correction 
the nozzle area 

po = 2.96 bar po = 40.43 bar po = 21.84 bar 
T0 = 457.16K To= 575.3 K To=516K 

Po = 100.7 bar Po = 35.69 bar 
To = 620.70 K To = 562.6 K 

Correction No correction Correction 
was needed was needed 
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and other calculated parameters of the flow are shown in figures 3-7. All the data concerning 
the vapor state as (?p, Z(p, To), etc. were taken from steam tables by Vukalovitch (1969). 

According to the results shown in these figures the satisfactory agreement can be obtained 
with the experimental data, concerning the pressure distribution. Nevertheless, the correction 
of the nozzle shape still remains an open problem. Due to different conditions of the 
experiments there is no rational recipe how to correct geometrical cross section of the nozzle in 
order to match the measured pressure distribution ahead of condensation. This is the first 
uncertainty of a general character for the nozzle flow calculation. 

The essential factor for the placing of the onset of condensation is the nucleation ratio. The 
idea of adjusting the classical theory of nucleation with the experiments, by means of 
correction parameter F seems to be reasonable. Unfortunately no unique answere can be found 
so far in respect to the value of this parameter at the high pressure. Among five different 
experiments analysed in this paper three of them indicate the value of F order 10 -2 (figures 3, 6 
and 7) whereas two experiments indicate the value of l02 (figures 4 and 5). This is the second 
uncertainty of the calculation method of the vapor flow with condensation. There is no clear 
idea what is the reason for the scatter of the coefficient F. 

For the high pressure in Gyarmathy's experiment (1974) a good agreement with the 
calculated and measured droplet radius along the nozzle has been found. It is shown in figure 8. 
This agreement indicates that the proposed model of a droplet growth can be adjusted to the 
experiment. The droplet growth influences the shape of pressure distribution at the onset of 
condensation. Calculated pressure distribution at this point fits the experiment quite well. 

U 
[~/~] 

750 

~ o  • 005 

250 

p o = z g E b e r  1"o=45715 °K  i -=  oo.fo-.~ 

°l 
0 0.0 

p U 

Ts 

A 

fO-3 

,4 / - -  

O 11 O 2  x - x  9 
[ - , ]  

Figure 3. Calculated parameters and measured pressure at low pressure according to author's experiments. 
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Figure 6. Calculated parameters and measured pressure at medium pressure according to Bakhtar et al. 
(1975). 
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Figure 7. Calculated parameters and measured pressure at medium pressure according to Balthtar et al. 
(]975). 

The present model of calculation of the water vapor flow with condensation seems to agree 
with the real picture only qualitatively. 

This conclusion can be also drawn out in the case of other models cited in the references. 
However, the matching factors in each model play an important role still. 

The improvement of the experimental investigations and the improvement of nucleation 
theory has to be done in order to achieve better quantitative agreement between the theory and 
experiment. 
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Figure 8. Calculated and measured mean radius of droplets according to Gyarmathy et al. (1974). 
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